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Abstract

The differential modulation of agonist and antagonist binding to opioid receptors (ORs) by

sodium (Na+) has been known for decades. To shed light on the molecular determinants,

thermodynamics, and kinetics of Na+ translocation through the μ-OR (MOR), we used a

multi-ensemble Markov model framework combining equilibrium and non-equilibrium atom-

istic molecular dynamics simulations of Na+ binding to MOR active or inactive crystal struc-

tures embedded in an explicit lipid bilayer. We identify an energetically favorable, continuous

ion pathway through the MOR active conformation only, and provide, for the first time: i) esti-

mates of the energy differences and required timescales of Na+ translocation in inactive and

active MORs, ii) estimates of Na+-induced changes to agonist binding validated by radioli-

gand measurements, and iii) testable hypotheses of molecular determinants and correlated

motions involved in this translocation, which are likely to play a key role in MOR signaling.

Author summary

Notwithstanding years of research supporting the notion that μ-opioid receptor (MOR)

function can be modulated by sodium ions (Na+), a complete understanding of Na+ trans-

location through the receptor and its effect on ligand binding at MOR requires additional

information. Here, we use computer simulations to elucidate the energetics involved in

sodium binding at inactive and active MOR, the timescales of sodium translocation through

these receptor conformations, and the molecular determinants involved in this process.

Introduction

Evidence of allosteric modulation of receptor signaling by cations was first presented in the lit-

erature for opioid receptors (ORs). Specifically, sodium (Na+) and lithium, but not other
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monovalent or divalent cations, were shown to enhance receptor binding of opiate antagonists

and to reduce the binding of opiate agonists, thus altering ligand properties in vivo [1].

Over the course of years, the original hypothesis that Na+ stabilizes an inactive conforma-

tion of the receptor was extended to several other G protein-coupled receptors (GPCRs) [2],

but it was only recently supported by various ultra-high resolution crystal structures of inactive

GPCRs, including that of δ-OR [3]. In this structure, Na+ was found to be bound at an alloste-

ric site through coordination with two water molecules as well as receptor residues N1313.35,

S1353.39, and D952.50 (superscripts refer to the Ballesteros-Weinstein generic numbering

scheme [4]). Notably, we observed a similar ion coordination in molecular dynamics (MD)

simulation studies [5] of Na+ binding from the bulk solvent to the inactive μ- and κ-OR (MOR

and KOR, respectively) crystal structures embedded in a hydrated 1-palmitoyl-2-oleoyl-sn-gly-

cero-3-phosphocholine (POPC)/10% cholesterol lipid bilayer and at physiological concentra-

tions of Na+.

Unlike their inactive crystal structures, experimental structures of active GPCRs (e.g., those

of MOR [6, 7]), show a collapsed ion binding site which likely results in weaker Na+ binding

affinity and consequent ion departure from the receptor. How Na+ migrates into the cytosol

has recently been described in the literature for the active state of the M2 muscarinic receptor

[8]. One conclusion of that study is that Na+ egress into the cytosol occurs without significant

energy barriers when the D2.50 is protonated and another fairly conserved residue, Y7.53, is in

an upward configuration. Notably, the intracellular egress of Na+ is further facilitated by the

formation of a hydrated pathway connecting the orthosteric ligand binding pocket to the G

protein binding site, a feature that has also been seen in experimental structures (e.g., those of

active MOR [6, 7]) as well as in recent simulation studies of GPCRs such as the adenosine A2A

receptor [9] and the serotonin 5-HT1A receptor [10].

Herein, using a combination of molecular dynamics (MD), Markov State Models (MSMs),

and machine learning tools, we provide, for the first time, estimates of the timescales associ-

ated with Na+ translocation through the TM helix bundle of either active or inactive MOR

conformations embedded in an explicit POPC/10% cholesterol lipid bilayer at a physiological

concentration of Na+. Moreover, we present complete free-energy profiles of Na+ movement

through these receptor states, estimates of Na+-induced changes to agonist binding validated

by radioligand measurements, and testable hypotheses of the most important underlying

motions and molecular determinants involved in Na+ translocation.

Results and discussion

To obtain both kinetic and thermodynamic estimates of Na+ translocation through active or

inactive MOR states, we estimated a Multi-Ensemble Markov Model (MEMM) from a number

of umbrella sampling (US) and independent, unbiased MD simulations, using the transition-

based reweighted analysis method (TRAM) [11]. Details of this method are reported in the

Methods section, while a summary of simulations we have run (S1 Table).

Simulations were run on inactive MOR with the key Na+-coordinating residue D1142.50

charged, and on active MOR with either a charged or a neutral (protonated) D1142.50 for the

following reasons: a) the D2.50 protonation state is hypothesized to be dependent on the con-

formational state of the receptor [12], with calculated pKa values above physiological pH and

an increased population of the D2.50 protonated state in active receptor conformations. While

these conclusions were drawn for the β2 adrenergic receptor (B2AR), the high degree of struc-

tural and sequence conservation of the sodium binding pocket across rhodopsin-like GPCRs

[2] suggests transferability to the MOR as well; b) based on calculated pKa values, the proxim-

ity of Na+ favors a charged D2.50 state over the neutral one [13], whereas D2.50 likely becomes
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protonated as Na+ moves away from this residue [8]; c) intracellular transfer of sodium is eas-

ier when D2.50 is protonated [8]; d) ligand-dependent G protein signaling is altered when D2.50

is mutated to a neutral amino acid in more than 25 different GPCRs [2]; and e) D2.50 is directly

involved in Na+ coordination in ultra-high resolution crystal structures of inactive but not

active GPCRs (e.g., compare inactive DOR [3] with active MOR [6] structures).

The MEMM framework was applied to coordinate trajectories from ~11 μs of combined

US and unbiased MD simulations of inactive and active MOR systems. Trajectories obtained

for each system were discretized into microstates encoding the Na+ position in the receptor, as

well as the slowest protein degrees of freedom captured by time-lagged independent compo-

nent analysis (tICA) of the conformation of protein residues near Na+ density values higher

than the bulk value in either active or inactive MOR structures (see the Methods section for

details of the selection of these residues, S2 Table for a complete list, and S1 Fig for their loca-

tion in a representative active MOR state from MD).

Spatial distribution of Na+ across the active and inactive MOR

The three-dimensional spatial density distributions of Na+ across inactive or active MOR, the

latter with either a charged or a protonated D1142.50, were obtained from the corresponding

combined trajectories of unbiased MD and US simulations (see the Methods section for

details). As shown in Fig 1, clear differences exist in the spatial distribution of Na+ across the

active and inactive MOR, with the inactive receptor structure (Fig 1a) exhibiting several more

localized high-density regions for the ion (red hotspots) compared to active MOR (Fig 1b and

1c). Perhaps the most striking difference between the active and inactive MOR is the continu-

ous Na+ density distribution observed through the entire TM bundle in the active, but not the

inactive, MOR.

Fig 1. Reweighted Na+ density heat maps of simulated active and inactive MOR systems. Residues D1473.32, D1142.50 and

Y3367.53 are displayed as sticks to roughly indicate the locations of the orthosteric ligand binding site, the Na+ allosteric binding site,

and the Na+ density gap (in the simulated inactive MOR system only), respectively, in the (a) inactive MOR crystal structure, (b)

active MOR crystal structure with charged D2.50, and (c) active MOR crystal structure with protonated D2.50. Dotted lines symbolize

the location of lipid head groups. A blue-to-red color scale illustrates low-to-high Na+ densities.

https://doi.org/10.1371/journal.pcbi.1006689.g001
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Molecular determinants involved in Na+ translocation through inactive

and active MOR systems

To generate testable hypotheses of the most important molecular determinants involved in

Na+ translocation among residues close to high ion densities, we extracted lists of residue pairs

(S3 Table) whose minimum heavy atom distance fluctuations had a correlation larger than 0.6

to the most dominant tIC0 and tIC1 components. Graphs illustrating these selected residue

pairs on the inactive or active MOR crystal structures are shown in S2 Fig. These highly corre-

lated inter-residue distance fluctuations to tIC0 and tIC1 (e.g., those involving the conserved,

functionally important, NPxxY(x)5,6F motif in rhodopsin-like GPCRs) can be interpreted as

the main contributors to the slowest (and most important) motion modes in the simulated

inactive and active MOR systems. For instance, out of a total of 176 residue pairs that are

highly correlated to tIC0 in the simulated inactive MOR (S3 Table), Y3367.53, F343H8 and

N3327.49 are involved in 89, 58, and 30 pairs, respectively, while other residues are only

involved in 3 or fewer pairs. Notably, disruption of the interaction between rhodopsin residues

corresponding to positions Y3367.53 and F343H8 in MOR has been shown to lead to rhodopsin

activation [14].

Overall, the simulated active MOR systems exhibited a reduced number of highly correlated

inter-residue distance fluctuations to the most dominant tIC0 and tIC1 components compared

to the inactive simulated MOR (S3 Table), although most of them still involved residues of the

NPxxY(x)5,6F motif. While N3327.49 also stood out as a main contributor to the most impor-

tant motions of the two simulated active MOR systems, Y3367.53 and F343H8 were found not

to be involved in the most important motions in the active MOR system with a protonated

D1142.50. Notably, recently published MD simulations of three different rhodopsin-like

GPCRs [9] revealed that three distinct rotamer conformations of the conserved Y7.53 residue

were correlated with the occlusion or opening of a continuous intrinsic water channel charac-

teristic of an inactive or active conformational state of the receptor, respectively. The observed

larger number of relevant tIC0 and tIC1 components involving Y3367.53 in the inactive MOR

compared to the active receptor (S3 Table) suggests that Na+ translocation to the cytosol in

inactive MOR is hindered by several residues that have to move in a concerted manner to

enable Y3367.53 to change its rotameric state and allow opening of the continuous intrinsic

water channel.

The highly correlated inter-residue distance fluctuations to tIC1 are very different in the

simulated inactive and active MOR systems (S3 Table). While in the inactive MOR all highly-

correlated pairs to tIC1 involve the conserved F2896.44 residue in concerted motion with TM1,

TM2, and TM3 residues, in the active MOR simulated with a charged D1142.50, roughly half of

the pairs are between residues located in the orthosteric ligand binding pocket (e.g., Y1483.33,

Y1493.34, and N1503.35) and residues at the allosteric Na+ binding site (e.g., A1132.49 and

D1142.50). In contrast, in the active MOR simulated with a protonated D1142.50, all but one

highly-correlated pairs to tIC1 involve the so-called “rotamer toggle switch” W2936.48 in con-

certed motion with TM3, TM4, TM5, and TM7 residues. Notably, many of these residues have

a known functional role [15], which, based on the above, might be due to their contribution to

Na+ translocation.

Thermodynamics of Na+ translocation through both the inactive and active

MOR

Using the MEMM framework (see Methods), we calculated the thermodynamics of Na+ trans-

location through both the inactive and active MOR. The derived free-energy profiles of inac-

tive and active MOR are reported in Fig 2.

Kinetics and thermodynamics of sodium ion translocation through an opioid receptor
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As seen in this figure, Na+ binding at its allosteric site (Na+ z-coordinate = 0) is ~6 kcal/mol

more energetically favorable in the inactive MOR compared to the receptor active state at

pH = 7 (up to ~11 kcal/mol compared to active MOR with a neutral D2.50). This means that in

the inactive MOR, the Na+ ion needs to overcome a significantly higher free-energy barrier to

egress to the cytosol compared to the active MOR (especially the state with a neutral D2.50,

where the free energy barrier for the translocation is the lowest), making ion egress less likely

to occur in an inactive MOR structure.

Kinetics of Na+ translocation through both the inactive and active MOR

We also built MSMs to elucidate the kinetics of Na+ translocation in the inactive or active

MOR. For this, we not only present the results of MOR simulated with either a charged or pro-

tonated D1142.50, but also those of a mixed model system at pH 7 that would capture, in princi-

ple, protonation changes of the residue (see Methods for details). Details of the MEMM

construction and its validation are provided in the Methods section and S3 Fig, respectively.

The microstates of the Markov model for each system were divided into a small set of metasta-

ble states, which were labeled according to the Na+ position relative to the receptor as “extra-

cellular”, “bound”, or “cytoplasmic” states. The transition networks between these states are

shown in Fig 3a for the inactive MOR, and in Fig 3b and 3c for active MOR with charged and

protonated D1142.50, respectively. S4, S5 and S6 Tables report the transition times between

these metastable states for inactive MOR, active MOR with charged D1142.50, and active MOR

with protonated D1142.50, respectively. The observed larger number of Na+ bound states in the

Fig 2. Integrated free energy profiles of Na+ translocation through inactive MOR (green) and active MOR with either

charged or protonated D1142.50 (red and brown, respectively), as well as at pH = 7 (orange), as a function of the Na+ z-

coordinate. The errors of the free energy are obtained via a bootstrapping procedure as described in the Methods.

https://doi.org/10.1371/journal.pcbi.1006689.g002
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inactive MOR (Fig 3a) indicates a more rugged energy landscape than in the active receptor

with multiple local minima that can trap the Na+ ion.

In order to obtain kinetic estimates of Na+ translocation that can be compared to experi-

ments, we coupled the Markov model obtained from TRAM to a bulk state with a fixed ion con-

centration, and calculated Na+ transition times from extracellular bulk to bound states (Na+

binding; Fig 4a), from bound to extracellular states (Na+ dissociation; Fig 4b), and from bound

to intracellular states (Na+ egress; Fig 4c) at different concentrations (see the Methods section).

As expected, the Na+ binding kinetics is highly concentration-dependent while the Na+ dis-

sociation and egress kinetics are virtually independent on concentration. While the timescale

of Na+ binding to the receptor is similar for the different receptor conformations, the time-

scales of Na+ dissociation and egress differ between inactive and active MOR. Specifically,

based on the “mixed model” at pH 7, Na+ dissociation from the active MOR is estimated to

take ~0.3 (0.2, 2.0) μs, which is significantly faster than in the inactive MOR (~5.5 (3.0, 8.0)

μs). This is consistent with the prediction that a Na+ bound state in the active MOR has signifi-

cantly higher free energy compared to the inactive MOR. The Na+ egress timescales are esti-

mated to be of the order of hundreds of milliseconds to ~60 s depending on whether the active

MOR has a protonated or charged D1142.50, whereas Na+ leaves the inactive MOR state in

~100 seconds, suggesting that Na+ can more easily migrate to the cytosol in an active MOR

with a protonated D1142.50 than in the inactive MOR. Notably, these predicted timescales are

similar to the experimentally derived lifetimes of GPCR/G protein complexes [16, 17]. From

the concentration-dependent MSM model, we estimated the Na+ binding affinity to be 23 mM

(from 14 mM to 50 mM with errors) at a ligand-free, inactive MOR or significantly lower

(850 mM; from 650 mM to 1.3 M with errors) at active MOR models with charged D2.50

Fig 3. Transition networks formed by the metastable states obtained from the Markov state models constructed for the inactive MOR (panel a) and

active MOR with charged or protonated D1142.50 (panels b and c, respectively). States are labeled according to the Na+ position relative to the receptor as

extracellular or cytoplasmic states, while bound states are highlighted with a black contour. The size of the circles depicting the metastable states is

proportional to the probability of individual states and the thickness of the arrows connecting them is proportional to the transition flux between the states.

Three-dimensional structures are shown in insets for each metastable state and represent the center of the corresponding PCCA cluster. Residues

highlighted as sticks are the highly coupled residues from tICA with the most significant sidechain conformational change among different PCCA cluster

center structures based on visual inspection.

https://doi.org/10.1371/journal.pcbi.1006689.g003
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Fig 4. Estimated transition times of (a) Na+ binding (from extracellular to bound states, in ns), (b) Na+

dissociation (from bound to extracellular states, in μs), and (c) Na+ egress (from bound to intracellular states, in

s) as a function of extracellular Na+ concentration. The Na+ concentration in the cytoplasm is assumed to be

constant. Transition times are calculated as the median of the mean first passage times calculated from individual

bootstrap samples and the full sample. Confidence intervals were estimated as the differences from the 1st and 3rd

quartiles.

https://doi.org/10.1371/journal.pcbi.1006689.g004
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(S4 Fig). The corresponding values for the active models with a neutral D2.50 and the model at

a constant pH = 7.0 are in excess of 1 M.

Na+ modulation of ligand binding to MOR

To explain Na+ modulation of ligand binding to MOR, we applied the two-state receptor theory

(see Methods), and used the free-energies obtained from the aforementioned models to calculate

sodium-induced stabilization of the receptor inactive state relative to the active one. Given that

antagonists bind with equal affinity to both active and inactive conformations of the receptor,

this model is consistent with the observation that antagonist bound fractions are not affected by

ion concentrations. In the case of a full agonist, we can quantitatively estimate the extent to

which its bound fraction is modulated by the ion concentration. Specifically, assuming a binding

affinity of ~4 nM [18] for MOR agonist DAMGO at the active conformation of the receptor, we

estimated the relative bound fraction of DAMGO to active MOR at constant pH = 7 as a func-

tion of the ion concentration as described in the Methods section, and report these results in Fig

5, together with experimental values obtained by radioligand binding experiments.

The calculated percent reduction in agonist binding at increasing ion concentrations (solid

line in Fig 5) by this simple model is in good agreement with the experimental data, and

indicates that ligand binding modulation is triggered by the stabilization of the inactive con-

formation of the receptor in the presence of sodium, which affects orthosteric ligand binding

affinity. The model estimates that 60 mM of Na+ (with a confidence interval between 50 and

150 mM) are required to achieve a 50% reduction of DAMGO binding, in excellent agreement

with the experimental value of 60 mM. For sodium concentrations above 200 mM, the simple

model employed here slightly underestimates the effect of sodium, suggesting that direct inter-

actions with the ligand or double occupation of the receptor by multiple ions might play a role

at high ionic strength. Saturation experiments (see S5 Fig) are also in reasonable agreement

with this simple allosteric model. In the presence of sodium (25 mM), the affinity of 3H-

DAMGO does not appreciably change (KD 1.8 and 0.89 nM for control and sodium condi-

tions) while the Bmax is lowered by 50% (333 fmol/mg protein to 156 fmol/mg protein). This is

consistent with a shift of the receptor to an inactive state from an active one.

In summary, the combination of MD, MSMs, and machine learning tools is powerful in

that it provides, for the first time, both kinetic and thermodynamic estimates of Na+ transloca-

tion through active or inactive MOR states in a membrane mimetic environment and at a

physiological concentration of Na+. The results provide quantitative support to the notion

that Na+ can more easily egress from the cytosol in an active MOR with a protonated D1142.50

than in an inactive receptor, as well as testable hypotheses of the most important underlying

motions and molecular determinants involved in Na+ translocation.

Methods

MD simulation details and systems setup

The active and inactive MOR systems were modeled based on the respective crystal structures

(PDB entries 5C1M and 4DKL, respectively). The missing loop between TM5 and TM6 in

4DKL was added as described previously [14, 19]. For the active MOR, the N-terminal region

preceding residue M65 was removed and the missing residues on the helix 8 at the C-terminus

was rebuilt using the Prime package included in the Schrödinger’s suite [20] to ensure both

simulated systems had identical primary sequences. Both inactive and active MOR models

were embedded in a POPC and cholesterol bilayer with a mixing POPC:cholesterol�9:1 ratio

and an area of 79×79 Å2. The membrane and protein were then neutralized and solvated with

explicit TIP3P water and a NaCl concentration of 150 mM. The entire simulation systems

Kinetics and thermodynamics of sodium ion translocation through an opioid receptor
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contained approximately 60,000 atoms with a volume of 79×79×106 Å3 and were assembled

using the CHARMM-GUI webserver [21]. The CHARMM36 force field [22, 23] was used to

model protein, lipids and ions and all molecular dynamics (MD) simulations were carried out

using the NAMD software package [24]. Both inactive and active MOR systems were simu-

lated in the NPT ensemble using the Nosé-Hoover Langevin piston method [25, 26] to main-

tain the pressure at 1 atm, and a Langevin thermostat to maintain the temperature around 310

K. Long-range electrostatic interactions were calculated using the Particle-Mesh Ewald (PME)

algorithm [27]. The van der Waals interactions were switched off gradually between 10 and 12

Å. Periodic boundary conditions were applied to the simulation boxes, and an integration

time step of 2 fs was used for all simulations. After a multi-step equilibration with gradually

decreasing harmonic constraints on lipid and protein heavy atoms, following the CHARMM-

GUI membrane builder equilibration protocol, an additional 60 ns unconstrained equilibra-

tion run was carried out. The last snapshot of this equilibration run was used as a starting

point for umbrella sampling simulations.

Fig 5. Percent change in [3H]-DAMGO binding as a function of increasing concentrations of NaCl, reported for a

concentration of [3H]-DAMGO of 1 nM, and assuming a [3H]-DAMGO binding constant of 4 nM. Circles represent

values from radioligand binding experiments, the solid line represents the predictions from the simulation data while the

shaded region corresponds to the errors associated with the predictions. Binding values are the means ± s.e.m. of three

independent experiments. Error bars that are not visible are smaller than the size of the symbol.

https://doi.org/10.1371/journal.pcbi.1006689.g005
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Umbrella sampling and unbiased simulations

US simulations were carried out to enhance sampling of the Na+ ion translocation across the

membrane through the interior of the TM helix bundle of MOR. A bias was applied to the Z-

coordinate of a reference sodium ion, parallel to the normal vector of the membrane surface

and measured from a reference position (Z = 0) corresponding to the location of the Na+ allo-

steric binding site defined as the center of mass of the Cα atoms of residues D1142.50, N1503.35,

W2936.48, and Y3267.43 (the superscripts refer to the Ballesteros-Weinstein numbering scheme

[4]). For each active and inactive MOR system, 157 starting configurations for US windows,

uniformly spaced by 0.5 Å, were selected to cover the entire TM region of the protein and part

of the bulk solvent (from Z = +40 Å in the extracellular region to Z = -35 Å in the intracellular

region). The reference sodium ion was slowly pulled from one window to another. A harmonic

biasing potential with a force constant of 10 kcal/(mol�Å2) was applied along the Z variable to

constrain the Na+ ion in the center of each window. A flat-bottom cylindrical constraint with

radius of 15 Å was applied to avoid insufficient sampling of the reference ion in the bulk sol-

vent and to prevent the disturbance by other ions. To prevent the drift of MOR in the mem-

brane, a harmonic potential was applied to the head groups of POPC lipids with a force

constant of 10 kcal/(mol�Å2). Each US window was run for at least 7 ns (in addition to 1 ns of

equilibration run) or until the relative entropy [28] reached values below 0.2 for an average

simulation length of 11.8 ns and a maximum simulation length of 100 ns. To assess the kinetic

behavior of the ion across the protein, we also carried out a set of unbiased simulations, start-

ing from the last frame of each umbrella sampling window and running additional 12 ns of

simulation. The same simulation settings as the biased simulations were used, while all

restraint potentials on the sodium and the lipids were removed.

Three-dimensional sodium density distributions

3D density distribution maps were built using a grid-based approach. First, global translational

and rotational motions of the protein in all simulation trajectories were removed by fitting to a

reference structure using the protein Cα atoms root mean square deviation (RMSD). Then, a

3D rectangular grid covering the entire TM domain of the protein and a small part of the bulk

solvent was built using a uniform grid spacing of 1.25 Å in all directions and amounting to a

volume of 30×30×70 Å3, and a total of 32,256 grid points. The 3D bins defined by the grid

were used to obtain the reweighted probability for the reference ion’s 3D position using the

data from both umbrella sampling and unbiased simulations and the weighted histogram anal-

ysis method (WHAM) estimator implemented in the python library PyEmma [29]. The

reweighted density values were normalized to the averaged density values of the grid points in

the bulk solvent (0.01 particles/nm3). The results were saved as a dx grid file, which was subse-

quently rendered as layered 3D color maps using the visualization software Pymol [30].

Selection of input features for the time-lagged independent component

analysis (tICA)

Sodium-interacting protein residues across the TM bundle were selected using the active

MOR with charged D1142.50 as a reference structure, which has sodium density registered over

a larger area compared to the three simulated MOR systems. A total of 105 residues within 4.4

Å from density grid points with values at least 7 times larger than the bulk region density were

identified using an in-house python code.

The pair-wise distances between residue heavy atoms as a function of time were extracted

using PyEmma and used as input features for tICA [31]. tICA uses a linear transformation to
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map the original input data r(t) onto a new set of time-lagged independent components (see

reference [31] for details). These components are correlated and their autocorrelation is maxi-

mal at a fixed lag-time [31]. Notably, the most dominant components span a linear subspace

that contains the slowest, and therefore most relevant, degrees of freedom. These components

can therefore provide the dimensional reduction that is necessary for the construction of a

MSM [31, 32] using PyEmma. A lag time of 0.1 ns was used for our tICA calculations and the

first two most dominant independent components, tIC0 and tIC1, were used to describe the

protein dynamics portion of our final MSM, which includes the Na+ motions as well.

The residue pairs whose minimum heavy atom distance fluctuations exhibited a larger than

0.6 correlation (the absolute value of the Pearson correlation coefficient) relative to tIC0 and

tIC1 were considered the slowest (and most important) motion modes.

Construction and clustering of the tICA free energy landscapes

We projected trajectories of the inter-residue minimum distance fluctuations between heavy

atoms of the 105 selected residues near Na+ high-density regions onto the two most dominant

independent components tICA0 and tICA1 with PyEmma and calculated the free energy land-

scapes of all three simulated MOR systems i.e., active MOR with either charged or protonated

D1142.50, and the inactive MOR. We included tICs extracted from both unbiased MD simula-

tions and umbrella sampling to construct the combined free energy landscapes sampled in

both sets of simulations. The combined landscapes were then subjected to k-means clustering

using PyEmma. Different k values were selected depending on the complexity of the individual

free-energy landscape. Specifically, we chose k = 5, 7 and 4 for the inactive MOR, active MOR

with charged D1142.50, and active MOR with protonated D1142.50 MOR, respectively. The

resulting cluster centers were then used to assign the frames in trajectories from the unbiased

and umbrella samplings simulations individually.

Thermodynamic and kinetic estimates from multi-ensemble Markov model

In order to optimally utilize both sets of unbiased MD and umbrella sampling simulations to

derive equilibrium and kinetic properties of the system, we used the recently published transi-

tion-based reweighing method (TRAM) [11] to estimate a MEMM. This approach aims at

overcoming the limitations of standard MD simulations (e.g., insufficient sampling of transi-

tion states) by integrating the results of enhanced sampling techniques such as umbrella sam-

plings [11, 33].

Since the Na+ binding, dissociation and egress from the TM bundle does not only depend

on the Na+ movement alone, but also on the protein conformational dynamics, we designed a

MEMM that takes both aspects into account. The trajectories from both the biased and unbi-

ased simulations were discretized into microstates encoding the Na+ position, as well as the

slowest protein degrees of freedom captured by tICA, which are represented by the transitions

between the conformational states on the free energy landscape in the space of tIC0 and tIC1

approximated by the k-mean clusters of the landscape. Specifically, microstates were defined

based on (i) the z coordinate of the Na+ ion, which was divided into 100 bins covering the

entire range of the umbrella sampling, and (ii) N k-means clustering of the two slowest tICA0

and tICA1 components, leading to a total of N×100 microstates, with N = 6, 5, and 4 for the

inactive MOR, active MOR with charged D1142.50, and active MOR with protonated D1142.50,

respectively. We label the microstates as (z, i), with 1� z� 100 and 1� i� N. The discretized

trajectories were used together to obtain a maximum-likelihood TRAM estimation of the tran-

sition matrix in the unbiased thermodynamic state via the python package PyEmma [29]. A
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lag time of 200 frames (or 0.4 ns), selected based on the convergence of the implied time scales,

was used for TRAM.

The free-energy of the microstates �Gðz; iÞ was obtained from the steady-state probabilities

from the Markov model estimated from TRAM. In order to obtain the one-dimensional free

energy profiles of the active and inactive MOR systems as a function of z, we integrated out the

tICA dimensions via the relation:

G zð Þ ¼ � kBTln
XN

i¼1
exp �

�Gðz; iÞ
kBT

� �� �

ð1Þ

Next, we calculated the timescales employed by the reference sodium ion to bind to and dis-

sociate from the extracellular side of the receptor, as well as to egress from the cytoplasmic

side. Considering the much higher Na+ concentrations in the extracellular region compared to

the cytoplasmic side of the cell membrane under physiological conditions and the resulting

unfavorable membrane potential, no ion binding from the intracellular side was taken into

account.

For the kinetics estimates, sodium trajectories that crossed the periodic boundary between

two unit cells along the z-direction were split in order to remove artificial transitions between

microstates close to the intracellular side and the extracellular side (i.e. z~0 and z~100, respec-

tively) without actually going through the receptor.

A kinetic model was constructed by first assigning all microstates from the MSM estimated

from TRAM into a small number of metastable states (Npcca = 9, 5 and 7 for inactive, active

with charged D2.50 and active with neutral D2.50 MORs, respectively) by using the Perron-clus-

ter cluster analysis [34] (PCCA+). A Npcca × Npcca transition matrix between the Npcca metasta-

ble states was then estimated using the Hummer-Szabo method [35], and a Markov model

estimated from this transition matrix using the PyEMMA package.

Furthermore, metastable states were clustered into three groups depending on whether

Na+, occupied the intracellular, bound, or cytoplasmic regions, respectively. Specifically,

microstate (i, z) was assigned to the cytoplasmic state if 1� z� 10. A microstate belonging to

one of the bins with 30� z� 60 was considered to belong to the ion bound state, whereas

microstates with 90� z� 100 were considered to belong to the extracellular state. Each of the

Npcca metastable states was then assigned to one of the three groups (intracellular, bound, or

cytoplasmic) if 90% of its microstates belonged to such a group.

Constant pH kinetic model for the active receptor

In order to assess the effect of D2.50 protonation on sodium binding, we constructed a kinetic

model that combines the properties of the sodium binding to the receptor with charged and

neutral D2.50, which we label with indices α and β, respectively. Specifically, to establish a com-

mon reference state for the active model of MOR, we assumed that the pKa of D2.50 in the

absence of Na+ nearby is pKa� 9 [13], which corresponds to a free-energy difference of ΔG0�

2.6 kcal/mol at physiological pH� 7.0. Using this shift, we expressed the free energy of the

microstates z of the MOR system with charged D2.50 as

εðAct:Þ
a
ðzÞ ¼ eðAct:Þ

a
ðzÞ þ DG0 ð2Þ

where eðAct:Þ
a
ðzÞ are the free-energies obtained from the simulation trajectories of the MOR sys-

tem with charged D2.50. We then obtained the thermodynamic properties for the combined
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system as a function of the ion position as

exp �
εðAct:ÞðzÞ
kBT

� �

¼ exp �
eðAct:Þ
a
ðzÞ þ DG0

kBT

� �

þ exp �
eðAct:Þb ðzÞ
kBT

 !

ð3Þ

where eðAct:Þb ðzÞ are the free-energies obtained from simulation trajectories of the MOR system

with neutral D2.50, while the probability of observing a charged sidechain as a function of the

ion position is:

paðzÞ ¼
1

1þ exp �
eðAct:Þ
b

ðzÞ� eðAct:Þa ðzÞ� DG0

kBT

� � ¼
1

1þ
p
ðAct:Þ
b

ðzÞ

p
ðAct:Þ
a ðzÞ

exp DG0

kBT

� � � exp � DGðzÞ
kBT

� �

ð4Þ

We then modeled the rates for a fixed protonation state of D2.50 using the kinetic models

obtained from analysis of the simulation run on MOR with either a charged or neutral D2.50:

Kðz; i; x; z0; i0; xÞ ¼ Kxðz; i; z
0; i0Þ ð5Þ

where x = α, β (i.e., charged and neutral D2.50 states, respectively), while z and i indicate, as

before, the position of the sodium ion and the conformational microstate of the protein. Fol-

lowing the evidence from NMR [36] we modeled the protonation process for given z and i
with a constant deprotonation rate (off-rate) koff

Kðz; i;b; z0; i0; aÞ ¼ dðz; z0Þdði; i0Þkoff ð6Þ

Based on published work [36], we used koff = 106 s−1. The protonation state that ensures

that the free energy difference between the two protonation states is preserved is therefore

K z; i; a; z0; i0; bð Þ ¼ d z; z0ð Þd i; i0ð Þkoff exp
DGðzÞ
kBT

� �

ð7Þ

while δ(z, z0)δ(i, i0) guarantees that only protonation events for a fixed ion position and side-

chain conformations are possible. Finally, the rates between the PCCA macrostates a and b
defined above were approximated as:

Kða; x; b; x0Þ ¼
X

j;z02b

X

i;z2a
pxði; zÞKðz; i; x; z0; i0; x0Þ ð8Þ

The matrix K was used to calculate kinetic rates for the constant pH = 7.0 model of the

active MOR system.

Kinetics at physiological sodium concentrations

In order to address the effects of sodium at physiological concentrations, we supplemented the

Markov model by coupling it to reference states corresponding to the intracellular and extra-

cellular bulk with constant sodium concentrations [Na+]IC and [Na+]EC, respectively. We

modeled the kinetics of ions across the receptor stepwise [37], as follows:

NaEC þ RÐ
kþEC

k�EC
ðNa � RÞECÐ

kij

kji
NaRÐ

kjl

klj
ðNa � RÞICÐ

k�IC

kþIC

NaIC þ R ð9Þ

where NaEC and NaIC indicate a cation in the extracellular or intracellular space, respectively

and parenthesis indicate the formation of an encounter complex, defined as the presence of an

ion within a cylinder of radius r0 = 1.5 nm in the extracellular or intracellular region of the

bulk. Rates kab were obtained from the estimated Markov model, while the rates for the
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formation of the encounter complexes, kþEC and kþIC, were obtained from the 3D Smoluchowski

expressions for a given ion diffusion constant DNaffi 20 nm2/μs and bulk concentration,

kþEC ¼ 4pDNarEC½Na
þ�EC ð10Þ

where rEC is encounter complex radius. The rates of ion dissociation from the encounter com-

plex, k�EC and k�IC determine the capture probabilities, γEC and γIC defined as the probability of

an ion to take part in the binding reaction, conditional on having formed the encounter com-

plex:

gEC ¼
k�EC

k�EC þ
P

jkij
ð11Þ

A similar equation for γIC was defined for the intracellular encounter complex. The values

of γ were estimated [38] from the unbiased simulations described in the text. The Na+ binding,

dissociation, and egress rates were calculated by coarse-graining the transition matrix corre-

sponding to the stepwise kinetic model and defined, respectively, as the rate of transition

between the extracellular unbound and the bound state, between the bound and the extracellu-

lar unbound state, and between the bound and the intracellular unbound state.

Allosteric effects of ion binding

We employed a minimal two-state model for receptor activation, which resulted in the same

functional form as the operational Black-Leff model. Let τu and τb be the equilibrium constants

between the active and inactive states of the ligand-free and ligand-bound receptors, respec-

tively, and let K and K? be the binding affinities of the ligand to the inactive and active receptor

states, respectively. Then the fraction of receptors bound to a ligand is:

fb ¼
½L�

L50 þ ½L�
ð12Þ

where

L50 ¼ K? 1þ tu
1þ tb

ð13Þ

Notably, for antagonists, τu* τb, and L50 does not depend on the equilibrium. For full ago-

nists, on the other hand, τb� τu and therefore L50ffi K?(1 + τu). Thus, the percent change of

the fraction of bound ligands at ligand concentration x ¼ ½L�=Lð0Þ50 when the sodium concentra-

tion changes from 0 to [Na+] is:

Dfb
fb
¼

fbð½Na
þ�Þ � fbð0Þ
fbð0Þ

¼
1 � rð½Naþ�Þ
xþ rð½Naþ�Þ

ð14Þ

where rð½Naþ�Þ ¼ Lð½Na
þ�Þ

50 =Lð0Þ50 . While varying concentrations of sodium can also affect the

affinity of ligands (K?), we posit, in agreement with the well-established assumption in the lit-

erature (see, e.g. [2] and references therein), that the dominant mechanism of modulation was

through changes in the stability of the active and inactive states of the receptor (τu):

r ½Naþ�ð Þ ’
tuð½Na

þ�Þ

t0
u

ð15Þ

and we used the results from our simulations to estimate this ratio. Specifically, the kinetic

models obtained from the TRAM estimation characterized the dynamics of two states of
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the receptor. If we denote with pðIna:Þi and with pðAct:Þi the probabilities obtained for the steady-

state of the two models, we can express the relative free-energies of all the states of the recep-

tor as

εðIna:Þi ¼ � logpðIna:Þi

εðAct:Þi ¼ � logpðAct:Þi � m

(

ð16Þ

where we measure energies in units of the thermal energy kT and μ is the activation free-

energy of the receptor in the absence of sodium. Specifically, the fraction of receptors in the

activated MOR state is

f ? ¼
P

ie
� εðAct:Þi

P
ie
� εðAct:Þi þ

P
ie
� εðIna:Þi

¼
e� m

e� m þ ZðIna:Þ=ZðAct:Þ
ð17Þ

where we indicated with Z(Ina.) and Z(Act.) the partition functions obtained summing over all

the states of the respective systems. Thus

tu ¼
1 � f ?

f ?
¼

ZðIna:Þ

e� mZðAct:Þ
ð18Þ

which gives in the end:

r ½Naþ�ð Þ ¼
ZðIna:Þ

ZðAct:Þ

� �

½Naþ�

ZðIna:Þ

ZðAct:Þ

� �� 1

0

ð19Þ

Error estimations with bootstrapping

A bootstrapping procedure similar to the one described previously [11] was used to estimate

the errors of free energy and transition times. For each simulation system, 12 bootstrap sam-

ples were obtained randomly selecting (with repetitions) unbiased trajectories for a total num-

ber of frames equal to 90% of the full sample. The resampled unbiased trajectories and the full

set of umbrella sampling trajectories were then combined and used to construct individual

MEMMs via TRAM. The transition times were estimated as the median of the mean first pas-

sage times calculated from individual bootstrap samples and the full sample. Confidence inter-

vals were estimated as the differences from the 1st and 3rd quartiles.

Binding experiments

Binding studies were carried out using membranes from CHO cells stably transfected with the

MOR-1 clone, as previously described [39]. Membranes (200 μg protein) were prepared and

binding assays carried out with 3H-DAMGO incubated at 25˚C for 1.5 h in potassium phos-

phate buffer (50 mM, pH 7.4) with MgSO4 (5 mM) in a volume of 500 μl. At the end of the

incubation, the samples were filtered over glass fiber filters and binding determined by scintil-

lation counting. In each experiment, samples were assayed in triplicate and specific binding

defined as the difference between total binding and binding in the presence of levallorphan

(10 μM). Studies looking at the effects of varying concentrations of NaCl utilized the indicated

concentration of NaCl with 3H-DAMGO (1 nM). Values are the average of three independent

replications of each experiment.
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